INVARIANT CROSS-SECTIONS AND INVARIANT LINEAR SUBSPACES*

BY

KY FAN**

ABSTRACT

Existence theorems for linear subspaces invariant under a continuous mapping and contained in a given set are obtained from a general theorem on existence ot invariant crosss-sections.

1. Introduction. For a continuous mapping π from a topological space X onto a topological space Y, a *cross-section* or a *n-cross-section* is, as usual, a continuous mapping ξ from Y into X such that $\pi \circ \xi$ is the identity mapping on Y. Together with π , let a set Γ of π -cross-sections and a continuous mapping ϕ from X into itself be given. We are interested in conditions which will ensure the existence of a $\xi \in \Gamma$ invariant under ϕ , i.e., $(\phi \circ \xi)(Y) \subset \xi(Y)$. In §2 we give such an existence theorem. In the extreme case when Yconsists of a single point, a π -cross-section invariant under ϕ is of course a fixed point of ϕ . Thus Theorem 1 may be regarded as a new generalization of Tychonoff's fixed point theorem.

In \S 3 we consider a set X in a topological vector space E and a continuous linear transformation ϕ from E into itself. We are interested in conditions which will ensure the existence of a linear subspace contained in X and invariant under ϕ . Theorems 2 and 3 are results of this type. Less general results have been given in our earlier paper [3].

The results in §3 lend interesting geometric insight into certain known theorems on invariant linear subspaces with a special property for a particular class of linear transformations. As a first example, consider a linear transformation ϕ from the *m*-dimensional real vector space R^m into itself such that the matrix of ϕ in some basis of R^m is totally positive, i.e., all minors of the matrix are positive. For a fixed positive integer $n < m$, let X denote the set of all those $x \in \mathbb{R}^m$ such that the number of variations of sign in the coordinates (with respect to the chosen basis) of x is at most $n-1$. The total positivity implies the variation-diminishing property, so that $\phi(X) \subset X$. It is easy to see that there

Received March 18, 1964.

^{*} Lecture delivered at a symposium on Series and Geometry in Linear Spaces, held at the Hebrew University of Jerusalem from March 16 till March 24, 1964.

^{**} This work was supported in part by the National Science Foundation, Grant G-24865.

exists a $(m - n)$ -dimensional linear subspace H in R^m such that $X \cap (x + H)$ is compact and convex for every $x \in R^m$. Therefore, according to Theorem 3 below, there exists an *n*-dimensional linear subspace L such that $\phi(L) = L$ and the number of variations of sign in the coordinates of every point in Lis at most $n-1$. This is a well-known property, discovered by Gantmacher and Krein, of totally positive linear transformations (see [4]).

Another known result related to Theorem 3 is the following theorem of Pontriagin-Iohvidov-Krein [6, 8, 10]. Let E be the usual Hilbert space of infinite complex sequences $x = \{x_i\}$ with $\|\bar{x}\| = (\sum_{i=1}^{\infty} |x_i|^2)^{1/2} < \infty$. Let *n* be a fixed positive integer and let $q_n(x) = \sum_{i=1}^n |x_i|^2 - \sum_{i=n+1}^n |x_i|^2$ for $x = \{x_i\} \in E$. If ϕ is a continuous linear transformation from E into itself, and if $q_n(x) \ge 0$ implies $q_p(x) \ge q_p(x)$, then there exists an *n*-dimensional linear subspace L of E such that $\phi(L) \subset L$ and $g(x) \ge 0$ for $x \in L$. This theorem is fundamental in the study of spectral properties of linear transformations in a Hilbert space with an indefinite inner product (see $[7, 9]$). A geometric reason for this theorem is again supplied by Theorem 3.

2. Existence of invariant cross-sections. For an arbitrary set F and a topological vector space E, we shall denote by E^F the topological vector space of all functions from F into E, with the topology of pointwise convergence. Thus E^F may be identified with the product space $\Pi_{\nu \in F} E_{\nu}$, where each E_{ν} is a copy of E. When E is separated and locally convex, E^F is clearly also separated and locally convex.

THEOREM 1. *Let X be a set in a separated locally convex topological vector* space E and Y a Hausdorff space. Let π be a continuous mapping from X onto Y, and ϕ a continuous mapping from X into E. Let Γ be an equicontinuous set *of* π *-cross-sections such that* Γ , when regarded as in E^Y , is a nonempty compact *convex set in the topological vector space* E^Y . If for every $\xi \in \Gamma$ there is an $\eta \in \Gamma$ *such that* $(\phi \circ \xi)(Y) \subset \eta(Y)$, then there exists a $\hat{\xi} \in \Gamma$ invariant under ϕ , i.e., $(\phi \circ \hat{\xi})(Y) \subset \hat{\xi}(Y)$.

Proof. Consider any $\xi \in \Gamma$. By hypothesis, there is an $\eta \in \Gamma$ such that $(\phi \circ \xi)(Y) \subset \eta(Y)$. For each $y \in Y$, there is a $z \in Y$ with $(\phi \circ \xi)(y) = \eta(z)$. Then since $\pi \circ \eta$ is the identity mapping on Y, we have $(\phi \circ \xi)(y) = \eta(z) = (\eta \circ \pi \circ \eta)(z)$ $=(\eta \circ \pi \circ \phi \circ \xi)(\nu)$. Thus, for each $\xi \in \Gamma$, there is an $\eta \in \Gamma$ such that

(1)
$$
\phi \circ \xi = \eta \circ \pi \circ \phi \circ \xi.
$$

Let $\xi_0 \in \Gamma$, a finite set $\{y_1, y_2, \dots, y_n\} \subset Y$ and a neighborhood U of 0 in E be given. We choose a neighborhood V of 0 in E such that $\phi(x) - (\phi \circ \xi_0)(yi)$ $\in U(1 \leq i \leq n)$ holds for all $x \in X$ satisfying $x - \xi_0(y_i) \in V(1 \leq i \leq n)$. Then $\xi \in \Gamma$ and $\xi(y_i) - \xi_0(y_i) \in V(1 \le i \le n)$ will imply $(\phi \circ \xi)(y_i) - (\phi \circ \xi_0)(y_i) \in U (1 \le i \le n)$. Hence the function $\xi \to \phi \circ \xi$ from Γ into E^Y is continuous on Γ .

Next, let $(\xi_0, \eta_0) \in \Gamma \times \Gamma$, a finite set $\{y_1, y_2, \dots, y_n\} \subset Y$ and a neighborhood U of 0 in E be given. By equicontinuity of Γ , there exists for each $i = 1, 2, \dots, n$, a neighborhood W_i of $(\pi \circ \phi \circ \xi_0)(y_i)$ in Y such that

$$
\eta(y) - (\eta \circ \pi \circ \phi \circ \xi_0)(y_i) \in U
$$
 for $y \in W_i$ and $\eta \in \Gamma$.

For this neighborhood W_i of $(\pi \circ \phi \circ \xi_0)(y_i)$, we find a neighborhood U_1 of 0 in E such that for each $i = 1, 2, \dots, n$:

$$
(\pi \circ \phi \circ \xi)(y_i) \in W_i
$$
 for all $\xi \in \Gamma$ satisfying $\xi(y_i) \in \xi_0(y_i) + U_1$.

Let N_1 be the neighborhood of ξ_0 in Γ formed by all $\xi \in \Gamma$ satisfying

$$
\xi(y_i) - \xi_0(y_i) \in U_1 \qquad (1 \le i \le n).
$$

Let N_2 be the neighborhood of η_0 in Γ formed by all $\eta \in \Gamma$ satisfying

$$
(\eta \circ \pi \circ \phi \circ \xi_0)(y_i) - (\eta_0 \circ \pi \circ \phi \circ \xi_0)(y_i) \in U \qquad (1 \leq i \leq n).
$$

Then we have

$$
(\eta \circ \pi \circ \phi \circ \xi)(y_i) - (\eta \circ \pi \circ \phi \circ \xi_0)(y_i) \in U \text{ for } \xi \in N_1, \ \eta \in \Gamma \text{ and } 1 \leq i \leq n,
$$

and therefore

 $(\eta \circ \pi \circ \phi \circ \zeta)(y_i) - (\eta_0 \circ \pi \circ \phi \circ \zeta_0)(y_i) \in U + U$ for $\zeta \in N_1, \eta \in N_2$ and $1 \leq i \leq n$.

This proves that the function $(\xi, \eta) \to \eta \circ \pi \circ \phi^0 \xi$ from $\Gamma \times \Gamma$ into E^Y is continuous on $\Gamma \times \Gamma$.

Let Δ denote the set of all $(\xi,\eta) \in \Gamma \times \Gamma$ satisfying (1). For each $\xi \in \Gamma$, let $\Delta(\xi) = {\eta \in \Gamma : (\xi, \eta) \in \Delta}$. As we have seen at the beginning of the proof, $\Delta(\xi)$ is nonempty for every $\xi \in \Gamma$. Since Γ is convex, $\Delta(\xi)$ is convex. Since $(\xi,\eta) \rightarrow \phi \circ \xi - \eta \circ \pi \circ \phi \circ \xi$ is a continuous function from $\Gamma \times \Gamma$ into E^Y , Δ is closed in $\Gamma \times \Gamma$. Thus for every $\xi \in \Gamma$, $\Delta(\xi)$ is a nonempty closed convex subset of the compact convex set Γ .

The set-valued function $\xi \to \Delta(\xi)$ is upper semi-continuous on Γ in the following sense: for any $\xi_0 \in \Gamma$ and any open set G in E^Y such that $\Delta(\xi_0) \subset G$, there is a neighborhood N_0 of ξ_0 in Γ such that $\Delta(\xi) \subset G$ for all $\xi \in N_0$. In fact, let \mathcal{N} be the family of all neighborhoods of ξ_0 in Γ . If we denote $\bigcup_{\xi \in N} \Delta(\xi)$ by $\Delta(N)$, then since Δ is closed in $\Gamma \times \Gamma$, it is easy to see that $\Delta(\xi_0) = \bigcap_{N \in \mathcal{N}} \overline{\Delta(N)}$. If an open set G in E^Y contains $\Delta(\xi_0)$, then by compactness of Γ , there is a finite number of $N_1, N_2, \cdots, N_k \in \mathcal{N}$ such that $G = \bigcap_{i=1}^k \overline{\Delta(N_i)}$. Then $N_0 = \bigcap_{i=1}^k N_i \in \mathcal{N}$ and $G = \Delta(N_0)$.

We now apply a generalization $\lceil 1, 5 \rceil$ of a fixed-point theorem of Kakutani. For the upper semi-continuous set-valued function $\xi \to \Delta(\xi)$ defined on Γ , there exists a $\hat{\zeta} \in \Gamma$ such that $\hat{\zeta} \in \Delta(\hat{\zeta})$. For this $\hat{\zeta}$, we have $(\phi \circ \hat{\zeta})(Y) = (\hat{\zeta} \circ \pi \circ \phi \circ \hat{\zeta})(Y)$ $\subset \mathcal{E}(Y)$, which completes the proof.

22 K. FAN [March]

Actually, Theorem 1 remains true, if the hypothesis on local convexity of the topological vector space E is replaced by the condition that every two distinct points of E may be separated by a continuous linear functional on E . This results from the following alternative proof.

Another proof of Theorem 1. As we have seen above, the proof of Theorem 1 amounts to showing the existence of a $\hat{\xi} \in \Gamma$ satisfying

(2)
$$
\phi \circ \xi = \xi \circ \pi \circ \phi \circ \xi.
$$

As in the first proof, we shall still need the facts that the function $(\xi,\eta) \rightarrow \phi \circ \xi - \eta \circ \pi \circ \phi \circ \xi$ from $\Gamma \times \Gamma$ into E^Y is continuous on $\Gamma \times \Gamma$, and that for each $\xi \in \Gamma$ there is an $\eta \in \Gamma$ satisfying (1).

Instead of local convexity, we assume now that any two distinct points of E can be separated by a continuous linear functional on E . It follows that E^r also has this property. For a continuous linear functional f on E^Y , let $\Phi(f)$ denote the set of all $\xi \in \Gamma$ satisfying $f(\phi \circ \xi - \xi \circ \pi \circ \phi \circ \xi) = 0$. The existence of a ξ satisfying (2) means $\bigcap_i \Phi(f) \neq \emptyset$, where the intersection is taken over all continuous linear functionals f on E^r. Since $\Phi(f)$ is a closed subset of the compact set Γ , it suffices to prove that $\bigcap_{i=1}^{n} \Phi(f_i) \neq \emptyset$ for any finite number of continuous linear functionals f_i on E^Y .

Given any finite set $\{f_1, f_2, \dots, f_n\}$ of continuous linear functionals on E^Y , consider the set Ψ formed by all $(\xi, \eta) \in \Gamma \times \Gamma$ satisfying

$$
\sum_{i=1}^n |f_i(\phi \circ \xi - \xi \circ \pi \circ \phi \circ \xi)| \leq \sum_{i=1}^n |f_i(\phi \circ \xi - \eta \circ \pi \circ \phi \circ \xi)|.
$$

We observe that: (i) Γ is a nonempty compact convex set in E^Y and Ψ is a closed subset of $\Gamma \times \Gamma$; (ii) $(\xi, \xi) \in \Psi$ for each $\xi \in \Gamma$; (iii) for each $\xi \in \Gamma$, the set ${n \in \Gamma : (\xi, \eta) \notin \Psi}$ is convex (or empty). These facts (i)-(iii) imply [2, Lemma 4] the existence of a $\xi_1 \in \Gamma$ such that $(\xi_1, \eta) \in \Psi$ for all $\eta \in \Gamma$; this implication does not require local convexity of E^Y . For this ξ_1 , we can find an $\eta_1 \in \Gamma$ such that $\phi \circ \xi_1 = \eta_1 \circ \pi \circ \phi \circ \xi_1$, which together with $(\xi_1, \eta_1) \in \Psi$ imply that $f_i(\phi \circ \xi_1 - \xi_1 \circ \pi \circ \phi \circ \xi_1) = 0$ for $1 \leq i \leq n$. Thus $\xi_1 \in \bigcap_{i=1}^n \Phi(f_i) \neq \emptyset$, which was to be proved.

COROLLARY 1. Let X be a set in a separated locally convex topologicalvector *space E. Let lr be a continuous mapping from X onto a Hausdorff space Y such that the following conditions are fulfilled:*

(3) For each $y \in Y$, $\pi^{-1}(y)$ is compact and convex.

(4) *The set* Γ_0 *of all* π *-cross-sections is nonempty and equicontinuous on Y.* Let ϕ be a continuous mapping from X into E. If for every $\xi \in \Gamma_0$ there is *an* $\eta \in \Gamma_0$ *such that* $(\phi \circ \xi)(Y) \subset \eta(Y)$, *then there exists a* $\xi \in \Gamma_0$ *such that* $(\phi \circ \hat{\xi})(Y) \subset \hat{\xi}(Y).$

Proof. By Theorem 1, it suffices to verify that the set Γ_0 of all π -cross-sections is a convex compact set in E^Y .

Let $\xi_1, \xi_2 \in \Gamma_0$ and let $\xi = c_1\xi_1 + c_2\xi_2$, where $c_1 \ge 0$, $c_2 \ge 0$ and $c_1 + c_2 = 1$. For each $y \in Y$, $\xi_1(y)$ and $\xi_2(y)$ are in the convex set $\pi^{-1}(y)$, so $\xi(y) \in \pi^{-1}(y)$. Hence $\xi(Y) \subset X$ and $\pi \circ \xi$ is the identity mapping on Y. As ξ is clearly continuous, we have $\xi \in \Gamma_0$. Thus Γ_0 is convex.

For each $y \in Y$, $\{\xi(y): \xi \in \Gamma_0\}$ is contained in the compact set $\pi^{-1}(y)$. It follows that Γ_0 is relatively compact in E^Y . It remains to verify that Γ_0 is closed in E^Y . Let ζ_0 be in the closure of Γ_0 in E^Y . For each $y \in Y$, $\zeta(y)$ is in the compact set $\pi^{-1}(y)$ for every $\xi \in \Gamma_0$; so we must have $\xi_0(y) \in \pi^{-1}(y)$. Thus $\xi_0(Y) \subset X$ and $\pi \circ \xi_0$ is the identity mapping on Y. That ξ_0 is continuous on Y follows from the equicontinuity of Γ_0 and the fact that ξ_0 is in the closure of Γ_0 . Hence $\xi_0 \in \Gamma_0$. This verifies that Γ_0 is closed in E^Y and therefore is compact.

3. Existence **of invariant linear subspaces.** In this section we apply Theorem 1 to study invariant linear subspaces contained in a given set.

THEOREM 2. *Let E, F be two separated locally convex topological vector spaces, and let p be a continuous linear transformation from E onto F. Let X be a set in E having the following properties:*

(5) For each $y \in F$, $\rho^{-1}(y) \cap X$ is compact and convex.

(6) *There is a neighborhood W of 0 in F such that* $\rho^{-1}(W) \cap X$ *is bounded.*

(7) *X contains a linear subspace L (not necessarily closed) of E such that* $\rho(L) = F$.

Let Λ denote the family of all linear subspaces L of E such that $L \subset X$ and $\rho(L) = F$. If ϕ is a continuous mapping from X into E such that for every $L \in \Lambda$, $\phi(L)$ is contained in some $M \in \Lambda$, then there exists an $\hat{L} \in \Lambda$ with $\phi(\hat{L}) \subset \hat{L}$.

Proof. Let Γ denote the set of all $\xi \in E^F$ such that $\xi(F) \subset X$, ξ is linear and $\rho \circ \xi$ is the identity mapping on F. Then $\xi(F) \in \Lambda$ for every $\xi \in \Gamma$. By(5), $X \cap \text{Ker } \rho$ is compact, so $L \cap \text{Ker } \rho = \{0\}$ for every $L \in \Lambda$. Thus to each $L \in \Lambda$ there corresponds a unique $\zeta \in \Gamma$ with $\zeta(F) = L$. Hence $\Lambda = {\zeta(F) : \zeta \in \Gamma}$, and (7) means that Γ is nonempty.

Consider an arbitrary neighborhood U of 0 in E. By (6), $\rho^{-1}(W) \cap X$ is bounded, so there is an $r > 0$ such that ρ^{-1} (W) $\cap X \subset rU$. Then for every $\xi \in \Gamma$ we have $\zeta(W) \subset \rho^{-1}(W) \cap X \subset rU$ or $\zeta(r^{-1}W) \subset U$. As W is a neighborhood of 0 in F , this shows that the set Γ of linear transformations is equicontinuous.

Let $\xi_1,\xi_2 \in \Gamma$ and $\xi = c_1\xi_1 + c_2\xi_2$, where $c_1 \ge 0$, $c_2 \ge 0$, $c_1 + c_2 = 1$. Then for each $y \in F$, the points $\xi_1(y)$ and $\xi_2(y)$ are in the convex set $\rho^{-1}(y) \cap X$, so $\xi(y) \in \rho^{-1}(y) \cap X$. Hence $\xi(F) \subset X$ and $\rho \circ \xi$ is the identity mapping on *F*. As ξ is linear, we have $\xi \in \Gamma$. Thus Γ is a convex set in E^F .

Let ξ_0 be in the closure of Γ in E^F . Then ξ_0 is necessarily linear. For each $y \in F$, $\xi(y)$ is contained in the compact set $\rho^{-1}(y) \cap X$ for every $\xi \in \Gamma$. This implies $\xi_0(y) \in \rho^{-1}(y) \cap X$. Hence $\xi_0(F) \subset X$ and $\rho \circ \xi_0$ is the identity mapping on F, i.e., $\xi_0 \in \Gamma$. This shows that Γ is closed in E^F . For each $y \in F$, $\{\xi(y): \xi \in \Gamma\}$ being contained in the compact set $p^{-1}(y) \cap X$, is relatively compact in E. It follows that Γ is relatively compact in E^F and therefore is compact.

If we denote by π the restriction of ρ on X, then $\pi(X) = F$. Γ is an equicontinuous set of π -cross-sections and it is a nonempty compact convex set in E^F .

Let $\xi \in \Gamma$ and $L = \xi(F)$. Then $L \in \Lambda$, so there is an $M \in \Lambda$ such that $\phi(L) \subset M$. Let $\eta \in \Gamma$ be such that $M = \eta(F)$. Then $(\phi \circ \xi)(F) = \phi(L) \subset \eta(F)$. By Theorem 1, there exists a $\hat{\zeta} \in \Gamma$ such that $(\phi \circ \hat{\zeta})(F) \subset \hat{\zeta}(F)$. Then $\hat{L} = \hat{\zeta}(F) \in \Lambda$ and $\phi(\hat{L}) \subset \hat{L}$, and the theorem is proved.

COROLLARY 2. Let a normed vector space E be the direct sum $E = E_1 \oplus E_2$ *of two closed linear subspaces* E_1 , E_2 , *of which* E_2 *is reflexive. For* $x = y + z$ *with* $y \in E_1$, $z \in E_2$, let $q(x) = ||y|| - ||z||$. Let Λ be the family of all those *linear subspaces (not necessarily closed) L of E such that* $\pi(L) = E_1$ and $q(x) \ge 0$ for $x \in L$, where π denotes the projection from $E_1 \oplus E_2$ onto E_1 . Let ϕ be a continuous linear transformation from E into itself. If, for any L $\epsilon \Lambda$, *there is an* $M \in \Lambda$ *with* $\phi(L) \subset M$, then there exists an $\hat{L} \in \Lambda$ with $\phi(\hat{L}) \subset \hat{L}$.

Proof. We use the weak topology of E, for which both π and ϕ remain continuous. Let $X = \{x \in E : q(x) \ge 0\}$. For each $y \in E_1$, $\pi^{-1}(y) \cap X = \{y + z:$ $z \in E_2$ and $||z|| \le ||y||$ is clearly convex; it is weakly compact since E_2 is reflexive. If $W = \{y \in E_1 : ||y|| \le 1\}$, then $\pi^{-1}(W) \cap X = \{y + z : y \in E_1, z \in E_2 \text{ and } z \in E_1\}$ $||z|| \le ||y|| \le 1$ is bounded. Thus the result follows from Theorem 2.

THEOREM 3. *Let E be a separated locally convex topological vector space. Let n be a positive integer and X a set in E having the following properties:*

(8) *There exists a closed linear subspace H in E of codimension n such that* $X \cap (x + H)$ is compact and convex for every $x \in E$.

(9) *X contains an n-dimensional linear subspace of E.*

Let ϕ be a continuous linear transformation from E into itself such that: (10) $\phi(X) \subset X$.

(11) *No* 1-dimensional linear subspace of E is contained in $X \cap \text{Ker}\phi$. *Then there exists an n-dimensional linear subspace L of E such that* $L \subset X$ *and* $\phi(L) = L$.

Proof. Observe first that in case F is finite dimensional, Theorem 2 **remains** valid without hypothesis (6). In the proof of Theorem 2, hypothesis (6) was used only in establishing the equicontinuity of Γ . (For the notation, see Theorem 2 and its proof.) In case F is of finite dimension n, the equicontinuity of Γ is a consequence of (5). In fact, let $\{e_1, e_2, \dots, e_n\}$ be a basis of F, and let U be an arbitrary balanced convex neighborhood of 0 in E. Since $\rho^{-1}(e_i) \cap X$ is compact, there is an $r > 0$ such that $r(\rho^{-1}(e_i) \cap X) \subset U$ for $1 \le i \le n$. Then $\xi(e_i) \in r^{-1}U$ for all $\xi \in \Gamma$ and $1 \leq i \leq n$. As U is balanced and convex, we have $\xi(y) = \sum_{i=1}^n c_i \xi(e_i) \in U$ for all $\xi \in \Gamma$ and all $y = \sum_{i=1}^n c_i e_i$ satisfying $\sum_{i=1}^n |c_i| \leq r$. Thus Γ is equicontinuous.

Now under the hypothesis of the present theorem, let ρ denote the canonical mapping from E onto E/H , and let $F = E/H$. Then dim $F = n$. Let Λ denote the family of all *n*-dimensional linear subspaces of E contained in X . By (10) and (11), we have $\phi(L) \subset X$ and dim $\phi(L) = n$ for $L \in \Lambda$. Thus $\phi(L) \in \Lambda$ for LeA. By (8), $X \cap \text{Ker } \rho = X \cap H$ is compact, so $L \cap \text{Ker } \rho = \{0\}$ for $L \in \Lambda$. Hence Λ is precisely the family of all linear subspaces L of E such that $L \subset X$ and $\rho(L) = F$. All hypotheses except (6) of Theorem 2 are satisfied. Since F is finite dimensional, the present theorem follows.

The following corollary has been given in [3]. It follows from Theorem 3 in the same manner that Corollary 2 follows from Theorem 2.

COROLLARY 3. Let a Banach space E be the direct sum $E = E_1 \oplus E_2$ of two *linear subspaces, of which* E_1 *is of finite dimension n and* E_2 *is reflexive. For* $x = y + z$ with $y \in E_1$, $z \in E_2$, let $q(x) = ||y|| - ||z||$. Let ϕ be a continuous *linear transformation from E into itself. If* $x \neq 0$ *and* $q(x) \geq 0$ *imply* $\phi(x) \neq 0$ *and* $q(\phi(x)) \ge 0$ *, then there exists an n-dimensional linear subspace L of E such that* $\phi(L) = L$ *and* $q(x) \ge 0$ *for all* $x \in L$.

REFERENCES

1. Fan, K., 1952, Fixed-point and minimax theorems in locally convex topological linear spaces, *Proe. Nat. Aead. Sei. U.S.A.,* 38, 121-126.

2. Fan, K., 1961, A generalization of Tychonoff's fixed point theorem, *Math. Annalen,* 142, 305-310.

3. Fan, K., 1963,Invariant subspaces of certain linear *operators, Bull. Amer. Math. Soe.,* 69, 773-777.

4. Gantmacher, F.R. and Krein, M.G., 1960, *Oszillationsmatrizen, Oszillationskerne grid kleine Sehwingungen meehanischer Systeme,* Akademie Verlag, Berlin.

5. Glicksberg, I.L., 1952, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, *Proc. Amer. Math. Soc.*, 3, 170–174.

6. Iohvidov, I.S., 1949, Unitary operators in a space with indefinite metric, *Zapiski Har'kov. Mat. Obšč.*, 21 (4), 79-86 (Russian).

7. Iohvidov, I.S. and Krein, M.G., 1956, Spectral theory of operators in spaces with an indefinite metric I, *Trudy Moskov. Mat. Obšč.*, 5, 367-432 (Russian); English transl., Amer. *Math. \$oe. Transl. Set.* 2, 13 (1960), 105-175.

26 K. FAN

8. Krein, M.G., 1950, On an application of the fixed-point principle in the theory of linear transformations of spaces with an indefinite metric, *Uspehi Mat. Nauk.,5,* No. 2 (36), 180-190 (Russian) ;English tansl., *Amer. Math. Soc. Transl. Ser.* 2, 1 (1955), 27-35.

9. Naimark, M.A., 1963, Commutative unitary operators on a π_k space, *Doklady Akad. Nauk SSSR.,* 149, 1261-1263 (Russian); English transl., *Soviet Math.,* 4 (1963), 543-545.

10. Pontrjagin, L.S., 1944, Hermitian operators in spaces with indefinite metric, *Izvestiya Akad. Nauk SSSR. Set. Mat.,* 8, 243-280 (Russian, English summary).

NORTHWESTERN UNIVERSITY EVANSTON, ILLINOIS