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ABSTRACT

Existence theorems for linea1 subspaces invariant under a continuous mg,pping
and contained in a given set are obtained from a gcneral theorem on existence
of invariant crosss-sections.

1. Introduction. For a continuous mapping = from a topological space X
onto a topological space Y, a cross-section or a n-cross-section is, as usual, a
continuous mapping ¢ from Y into X such that zo ¢ is the identity mapping
on Y. Together with =, let a set T of n-cross-sections and a continuous mapping
¢ from X into itself be given. We are interested in conditions which will ensure
the existence of a £ e I' invariant under ¢,i.e., (¢ 0 E)(Y) c £(Y). In §2 we give
such an existence theorem. In the extreme case when Y consists of a single point,
a m-cross-section invariant under ¢ is of course a fixed point of ¢. Thus Theorem 1
may be regarded as a new generalization of Tychonoff’s fixed point theo-
rem,

In §3 we consider a set X in a topological vector space E and a continuous
linear transformation ¢ from E into itself. We are interested in conditions which
will ensure the existence of a linear subspace contained in X and invariant under ¢.
Theorems 2 and 3 are results of this type. Less general results have been given
in our earlier paper [3].

The resultsin §3 lend interesting geometric insight into certain known theorems
on invariant linear subspaces with a special property for a particular class of
linear transformations. As a first example, consider a linear transformation ¢
from the m-dimensional real vector space R™ into itself such that the matrix of
¢ in some basis of R™ is totally positive, i.e.,all minors of the matrix are positive.
For a fixed positive integer n<m, let X denote the set of all those
x € R™ such that the number of variations of sign in the coordinates (with respect
to the chosen basis) of x is at most n — 1. The total positivity implies the
variation-diminishing property, so that ¢(X) = X. It is easy to see that there
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exists a (m — n)-dimensional linear subspace H in R™ such that X N (x + H)
is compact and convex for every x e R™. Therefore, according to Theorem 3
below, there exists an n-dimensional linear subspace L such that ¢(L)= L and
the number of variations of sign in the coordinates of every point in Lis at most
n—1. This is a well-known property, discovered by Gantmacher and Krein,
of totally positive linear transformations (see [4]).

Another known result related to Theorem 3 is the following theorem of
Pontrjagin-Iohvidov-Krein [6, 8, 10]. Let E be the usual Hilbert space of infinite
complex sequencesx = {x;} with || x| =(X,2|x)|?)"/*< 0. Let n be a fixed
positive integer and let g, (x) = X7y |x|* = Xi%pes | x| for x={x}€E. If
¢ is a continuous linear transformation from E into itself, and if g,(x) 2 0 implies
q(9(%)) 2 q.{x), then there exists an n-dimensional linear subspace L of E such
that ¢(L) = Land g,(x) = 0 for x e L. This theorem is fundamental in the study
of spectral properties of linear transformations in a Hilbert space with an inde-
finite inner product (see [7, 9]). A geometric reason for this theorem is again
supplied by Theorem 3.

2. Existence of invariant cross-sections. For an arbitrary set Fand a topological
vector space E, we shall denote by EF the topological vector space of all
functions from F into E, with the topology of pointwise convergence. Thus EF
may beidentified with the product space I1, . ; E,, where each E,, is a copy of E.
When E is separated and locally convex, E” is clearly also separated and locally
convex.

THEOREM 1. Let X be a set in a separated locally convex topological vector
space E and Y a Hausdorff space. Let © be a continuous mapping from X onto Y,
and ¢ a continuous mapping from X into E. Let T be an equicontinuous set
of m-cross-sections such that T, when regarded as in E¥, is a nonempty compact
convex set in the topological vector space EY. If for every £ €T thereisannel
such that (¢ 0 E)(Y) = n(Y), then there exists a EeT invariant under ¢, i.e.,

(¢ = &().

Proof. Consider any éeT. By hypothesis, there is an neI such that
(¢ 0&)(Y)<n(Y). For each yeY, there is a ze Y with(¢ o &)(y) =n(z). Then
since o is the identity mapping on Y, we have (¢ ¢ &)(y) = n(z) = (nonon)(z)
=(monodo&)(y). Thus, for each £ eT, there is an n eI such that

o $pof = nomrogog.

Let &, €T, a finite set {y,,y;,"",y.} = Y and a neighborhood U of 0 in E be
given. We choose a neighborhood V of 0 in E such that ¢(x) — (0 &o)(yi)
e U(1 £i £ n) holds for all x € X satisfyingx — &y(y)e V(1 £i<n). Then €eT
and &(y) - &o(y) € V(L £ i < n) willimply (p 0 E)(y)) — (9 0&o)(y)e U (1 i<n).
Hence the function & - ¢ o & from T into' EY is continuous on T.



1964] INVARIANT CROSS-SECTIONS 21

Next, let (¢4,n0) €T x T, a finite set {y,y,,*-*,¥,} = Y and a neighbothood
U of 0 in E be given. By equicontinuity of I', there exists for each i = 1,2,.-.;n,
a neighborhood W; of (mo ¢ 0 E)(y,) in Y such that

n(y)—(monodo&y)(y)eU for ye W, and nel.

For this neighborhood W, of (mo ¢o &y)(y;), we find a: neighborbocd Uy of 0
in E such that foreach i =1,2,---,n:

(mopo&)(y) e W, for all £eT satisfying &(y,) e Eo(y) + Uy,
Let N, be the neighborhood of &, in I formed by all £ e T satisfying

) —Eoly) e U,y 51 Sign).
‘Let N, be the neighborhood of 7, in I" formed by all neT satisfying

(momodolo)(y) — (oo mo o é)(y)eU (1 Zisn).
Then we have
(mono¢o &)(y) — (momo po éy)(y)eU for (eNy, nel and 1Sin,
and therefore
(nomo ¢o&)(y) — (meomo o &)(y)eU + Ufor {eNy,neNyand1<i<n.

This proves that the function (£,1)— o no¢ 9¢ from T x I into E” is continuous
onI'xT.

Let A denote the set of all (£,4) eI x I satisfying (1). For each (€T, let
A(Q) ={nel:(&n)eA}. As we have seen at the beginning of the proof, A(¢)
is nonempty for every éeI’. Since I' is convex, A(f) is convex. Since
& n)—>doé—nonogdoé is a continuous function from I' x T into EY, A is
closed in I' x I'. Thus for every é e, A(§) is a nonempty closed convex subset
of the compact convex set I'.

The set-valued function & — A(€) is upper semi-continuous on I in the follow-
ing sense: for any £, e I" and any open set G in E¥ such that A(¢,) = G, there is
a neighborhood N, of &, in T" such that A(¢) = G for all €& N,. In fact, let &
be the family of all neighborhoods of &, in I". If we denote Ugezv A(E) by A(N),
then since A is closed in " x T, it is easy to see that A(£,) = ﬂNE ,A(_N). If an
open set G in EY contains A(&,), then by compactness of I, there is a finite
number of Ny, Ny, -+,Ni € A such that G ()=, A(N)). Then No = ()} =sN;e#’
and G SA(N,).

We now apply a generalization [1, 5] of a fixed-point theorem of Kakutani.
For the upper semi-continuous set-valued function & - A(¢) defined on T, there
exists a & e " such that & e A(8). For this &, we have (¢0 &)(¥) = (Eo no o &)(Y)
< &(Y), which completes the proof.
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Actually, Theorem 1 remains true, if the hypothesis on local convexity of the
topological vector space E is replaced by the condition that every two distinct
points of E may be separated by a continuous linear functional on E. This results
from the following alternative proof.

Another proof of Theorem 1. As we have seen above, the proof of Theorem 1
amounts to showing the existence of a &eT satisfying

(¥)) pol = Eomogol.

As in the first proof, we shall still need the facts that the function
(&M~ pot—nono¢goé from I' x I into E¥ is continuous on I' x I, and
that for each £ eI there is an n e T satisfying (1).

Instead of local convexity, we assume now that any two distinct points of E
can be separated by a continuous linear functional on E. It follows that EY
also has this property. For a continuous linear functional f on EY, let ®(f) denote
the set of all £ eI satisfying f(¢o & — Eonmo ¢po &) =0. The existence of a &
satisfying (2) means n +O(f) #Q, where the intersection is taken over all con-
tinuous linear functionals f on E ¥ Since ®(f) is a closed subset of the compact
set T, it suffices to prove that ﬂ:"=1 ®(f,) # & for any finite number of con-
tinuous linear functionals f; on E'.

Given any finite set {fy,f2,,f,} of continuous linear functionals on E,
consider the set ¥ formed by all ({,n) eI x I satisfying

£ lipot-tonogod| 5 £ ligot-nonogod).

We observe that: (i) I" is a nonempty compact convex setin E¥ and ¥ is a closed
subset of T' x I'; (ii) (£,8)eY for each £eT; (iii) for each £eT’, the set
{neT: (¢,n) ¢ P} is convex (or empty). These facts (i)~(iii) imply [2, Lemma 4]
the existence of a §, eI" such that (¢,,n) e ¥ for ail neT'; this implication does
not require local convexity of E¥. For this £;, we can find an 5, €I" such that
o =nonodoé,, which together with ({4, 7)) e¥ imply that
J$o & —¢&omodol,) =0 for 1Si<n. Thus § e[ )i~ ®(f) #F, which
was to be proved.

CoROLLARY 1. Let X be a set in a separated locally convex topologicalvector
space E. Let © be a continuous mapping from X onto a Hausdorff space Y such
that the following conditions are fulfilled:

(3) For each yeY, n~(y) is compact and convex.
(4) Theset Ty of all n-cross-sections is nonempty and equicontinuous on Y.
Let ¢ be a continuous mapping from X into E. If for every £ €X'y there is
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an nely such that (¢o&)(Y) =n(Y), then there exists a &eT, such that
(¢ O(YV) = &(Y).

Proof. By Theorem 1, it suffices to verify that the set I'y of all n-cross-sections
is a convex compact set in E".

Let &;,&,€T, and let & = ¢,&; + ¢,¢,, where ¢, 20,¢c, 20 and ¢; +¢,=1.
For each ye Y, &,(y) and &,(y) are in the convex set 7~ '(y), so () en™'(p).
Hence ¢(Y) < X and no & is the identity mapping on Y. As £ is clearly continuous,
we have £eTy. Thus I'y is convex.

For each ye Y, {é(y):£eT,} is contained in the compact set (). It fol-
lows that T, is relatively compact in EY. It remains to verify that I’y is closed in
EY.Let &, bein the closure of I'yin EY. For each y € Y, &(y) is in the compact set
7~ (y) for every £eTy; so we must have &y(y) e n™'(y). Thus £(Y) =X and
no &, is the identity mapping on Y. That &, is continuous on Y follows from the
equicontinuity of I'y and the fact that &, is in the closure of I'y. Hence {y€TI'y.
This verifies that Iy is closed in EY and therefore is compact.

3. Existence of invariant linear subspaces. In this section we apply Theorem 1
to study invariant linear subspaces contained in a given set.

THEOREM 2. Let E, F be two separated locally convex topological vector
spaces, and let p be a continuous linear transformation from E onto F. Let X
be a set in E having the following properties:

(5) For each yeF, p~*(y) N X is compact and convex.

(6) There is a neighborhood W of 0 in F such that p~'(W) N X is bounded.

(1) X contains a linear subspace L (not necessarily closed) of E such that
p(L)=F.

Let A denote the family of all linear subspaces L of E such that Lc X and
p(L)=F. If ¢ is a continuous mapping from X into E such that for every
Le A, ¢(L) is contained in some M € A, then there exists an L e A with ¢(L) < L.

Proof. Let I' denote the set of all & e EF such that &(F) c X, £ is linear and
po ¢ is the identity mapping on F. Then £(F) € A forevery £ e T By(5), X NKerp
is compact, so L NKerp = {0} for every LeA. Thus to each LeA there cor-
responds a unique ¢ e I" with &(F) = L. Hence A = {{(F):£eT}, and (7) means
that I" is nonempty.

Consider an arbitrary neighborhood U of 0 in E. By (6), p ' (W) NX is
bounded, so there is an r > 0 such that p! (W) N X < rU.Then forevery (eI
we have §W) cp'(W)NX crU or (™ 'W)< U. As W is a neighborhood
of 0 in F, this shows that the set I" of linear transformations is equicontinuous.

Let &,,¢é,eT and & =¢, & + ¢, ¢,, where ¢, 20, ¢, 20, ¢y +c;=1. Then
for each yeF, the points &,(y) and &,(y) are in the convex set p~'(y) NX,
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so é(») ep () NX. Hence &(F) « X and p o ¢ is the identity mapping on F.
As € is linear, we have EeI". Thus I is a convex set in EF.

Let &, be in the closure of T in EF. Then £, is necessarily linear. For each
y € F, &(y) is contained in the compact set p~ }(y) N X for every £ e I'. This implies
E(Nep () NX. Hence E(F) = X and po &, is the identity mapping on F,
i.e., & eT'. This shows that I is closed in EF. For each y e F, {é(y): £ e '} being
contained in the compact set p~*(y) N X, is relatively compact in E. It follows
that I is relatively compact in EF and therefore is compact.

If we denote by 7 the restriction of p on X, then n(X) = F. I is an equicon-
tinuous set of n-cross-sections and it is a nonempty compact convex set in EF.

Let £eT and L= &(F). Then Le A, so there is an M € A such that ¢(L) c M.
Let n eI be such that M = 5(F). Then (¢o &)(F) = ¢(L) = n(F). By Theorem 1,

there exists a & e T such that (¢po &)(F) < &F). Then L. =E(F)eA and ¢(f) < L,
and the theorem is proved.

COROLLARY 2. Let a normed vector space E be the direct sumE=E, ® E,
of two closed linear subspaces E,, E,, of which E, is reflexive. For x=y + 2
with yeE,, z€E,, let q(x)=|y| —|z||. Let A be the family of all those
linear subspaces (not necessarily closed) L of E such that n(L)=E,; and
q(x) =0 for x € L, where m denotes the projection from E, ®E, onto E,. Let
¢ be a continuous linear transformation from E into itself. If, for any Le A,
there is an M e A with ¢(L) = M, then there exists an Le A with ¢(L)c L.

Proof. We use the weak topology of E, for which both © and ¢ remain
continuous. Let X = {xe E:q(x) 20}. For each yekE,, T MNX={y+z:
zeE, and ||z|| £ | y|} is clearly convex; it is weakly compact since E, is re-
flexive. If W = {yeE,:|y| S 1}, thena '(W)NX ={y+z: yeE,,z€E, and
lz]| £ | y| €1} is bounded. Thus the result follows from Theorem 2.

THEOREM 3. Let E be a separated locally convex topological vector space.
Let n be a positive integer and X a set in E having the following properties:

(8) There exists a closed linear subspace H in E of codimension n such that
X N(x + H) is compact and convex for every xeE.

(9) X contains an n-dimensional linear subspace of E.

Let ¢ be a continuous linear transformation from E into itself such that:
(10) ¢(X)cX.

(11) No 1-dimensional linear subspace of E is contained in X NKerg.

Then there exists an n-dimensional linear subspace L of E such that Lc X
and ¢(L) = L.

Proof. Observe first that in case F is finite dimensional, Theorem 2 remains
valid without hypothesis (6). In the proof of Theorem 2, hypothesis (6) was used
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only in establishing the equicontinuity of I'. (For the notation, see Theorem 2
and its proof.) In case F is of finite dimension n, the equicontinuity of T is a
consequence of (5). In fact, let {e,,e,,---,e,} be a basis of F, and let U be an
arbitrary balanced convex neighborhood of 0 in E. Since p~!(e;) N X is compact,
there is an r > 0 such that r(p~*(e) NX)c U for 1 £i<n. Then &e)er U
for all (el and 1Li<n. As U is balanced and convex, we have
E(y)=X,-1¢E(e)e U forall eT and all y = X7_ ;e satisfying X%, le] = r.
Thus I is equicontinuous.

Now under the hypothesis of the present theorem, let p denote the canonical
mapping from E onto E/H, and let F=E/H. Then dimF =n. Let A denote
the family of all n-dimensional linear subspaces of E contained in X. By (10)
and (i1), we have ¢(L)c X and dim ¢ (L) = n for Le A. Thus ¢(L)eA
for LeA. By (8), X nKer p = X N H is compact, so L NKerp = {0} for LeA.
Hence A is precisely the family of all linear subspaces L of E such that Lc X
and p(L) = F. All hypotheses except (6) of Theorem 2 are satisfied. Since F is
finite dimensional, the present theorem follows.

The following corollary has been given in [3]. It follows from Theorem 3
in the same manner that Corollary 2 follows from Theorem 2.

COROLLARY 3. Let a Banach space E be the direct sum E=E, ®E, of two
linear subspaces, of which E; is of finite dimension n and E, is reflexive. For
x=y+z with yeE,, zeE,, let qx)=|y| —|z[. Let ¢ be a continuous
linear transformation from E into itself. If x #0 and q(x) =20 imply ¢(x)#0
and q(¢(x)) =0, then there exists an n-dimensional linear subspace L of E
such that ¢(L)= L and q(x) 2 0 for all xe L.
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