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AB.S'FRAC~ 

Existence theorems for iinem subspaces invariant under a continuous mapping 
and contained in a given set are obtained from a g~neral theorem on existence 
ot invariant crosss-sections. 

1. Introduction. For a continuous mapping ~ from a topological space X 
onto a topological space Y, a cross-section or a n-cross-section is, as usual, a 
continuous mapping ~ from Y into X such that  xo ~ is the identity mapping 
on Y. Together with x, let a set F of x-cross-sections and a continuous mapping 
~b from X into itself be given. We are interested in conditions which will ensure 
the existence of a ~ E F invariant under ~, i.e., (~ o O(Y) c ~(Y). In §2 we give 
such an existence theorem. In the extreme case when Yconsists of a single point, 
a x-cross-section invariant under ~ is of course a fixed point of  ~. Thus Theorem 1 
may be regarded as a new generalization of Tychonoff's fixed point theo- 
rem. 

In §3 we consider a set X in a topological vector space E and a continuous 
linear transformation ~b from E into itself. We are interested in conditions which 
will ensure the existence of  a linear subspace contained in X and invariant under ~. 
Theorems 2 and 3 are results of this type. Less general results have been given 
in our earlier paper [3]. 

The results in §3 lend interesting geometric insight into certain known theorems 
on invariant linear subspaces with a special property for a particular class of  
linear transformations. As a first example, consider a linear transformation 
from the m-dimensional real vector space R" into itself such that the matrix of  

in some basis of R"  is totally positive,i.e., all minors of the matrix are positive. 
For a fixed positive integer n < m ,  let X denote the set of  all those 
x e R m such that the number of variations of sign in the coordinates (with respect 
to the chosen basis) of x is at most n -  1. The total positivity implies the 
variation-diminishing property, so that ~(X) c X.  It is easy to see that there 
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exists a ( m -  n)-dimensional linear subspace H in R m such that X n (x + H) 
is compact and convex for every x ~ R m. Therefore, according to Theorem 3 
below, there exists an n-dimensional linear subspace L such that ~b(L)= L and 
the number of  variations of  sign in the coordinates of  every point in Lis  at most 
n -  1. This is a well-known property, discovered by Gantmacher and Krein, 
of  totally positive linear transformations (see [4]). 

Another known result related to Theorem 3 is the following theorem of  
Pontrjagin-Iohvidov-Krein [6, 8, 10]. Let E be the usual Hilbert space of  infinite 
complex sequencesx = {xl} with [lx[] =(~, ,~llx~lZ)l/2< oo. Let n be a fixed 

" Ix, I 2 for x = { x , } e E .  If positive integer and let q.(x) = r,=,lx, I - ~:,=.+1 
is a continuous linear transformation from E into itself, and if q.(x) > 0 implies 

q,(~b(x)) ~_ q,,(x), then there exists an n,dimensional linear subspace L of  E such 
that q~(L) c L and q,(x) > 0 for x e L. This theorem is fundamental in the study 
of  spectral properties of linear transformations in a Hilbert space with an inde- 
finite inner product (see [7, 9]). A geometric reason for this theorem is again 
supplied by Theorem 3. 

2. Existeace ofiavariant cross-sections. For an arbitrary set F a n d  a topological 
vector space E, we shall denote by E r the topological vector space of  all 
functions from F into E, with the topology of  pointwise convergence. Thus E F 
may be:identified with the product space Hy ~ r Ey, where each Ey is a copy of  E. 
When E is separated and locally convex, E r is clearly also separated and locally 
COll~ex. 

THEOREM 1. Let X be a set in a separated locally convex topological vector 
space E and Ya Hausdorff space. Let n be a continuous mapping from X onto Y, 
and q~ a continuous mapping from X into E. Let F be an equicontinuous set 
of n-cross-sections such that F, when regarded as in E Y, is a nonempty compact 
convex set in the topological vector space E r. I f  for  every ~ ~ r there is an ~i e F 
such that (q~ o ~ ) ( Y ) c  ~l(Y), then there exists a ~ e r invariant under dp, i.e., 

c 

Proof.  Consider any ¢ ~ F .  By hypothesis, there is an ~/EF such that 
(~b o O ( Y ) c  t/(Y). For each y e Y, there is a z e Y with (~b o ~)(y) = ~/(z). Then 
since no ~/is the identity mapping on Y, we have (q~ o ~)(y) = ~/(z) = 0/o no ~/)(z) 
= (11 o n o q~ o ~)(y). Thus, for each ~ e F, there is an r/e r such that 

(1)  = ,to o@o . 

Let ~oEF,  afinite set {Yt ,Y2, '" ,Y .}  c Yand a neighborhood U of 0 in E be 
given. We choose a neighborhood V of 0 in E such that ~b(x) - (q~o ¢o)(yi) 
e U(1 < i < n) holds for all x ~ X satisfyingx - ~o(Yl) e V(1 < i < n). Then ~ e F 
and ~(y~)- ~o(Y~) e V(1 < i < n) wilt imply (~b o ~)(y~) - (4 o ¢o)(Y,) e U (1 < i < n). 
Hence the function ~ ~ ~b o ~ from F in to  E r is continuous on r .  
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Next, let (Go,t/0)E F x F,  a finite set { Y , Y 2 , " ' , Y , }  c Yand a neighborhood 
U of 0 in E be given. By equicontinuity of F, there exists for each i = 1,2,...,n, 
a neighborhood W~ of (re o q~ o ~o)(Yt) in Ysuch that 

~/(y) - (t/o rco 4~o ~o)(Y3 e U for y ~ Wt and t/~ F.  

For this neighborhood W~ of (~o ~o ~o)(Y3, we find a; neighhorhocd U I  of 0 
in E such that for each i = 1,2, ...,n : 

(re o 4~o C)(Y3 e W~ for all ~ ~ F satisfying ~(y~) ~ Co(Y3 + Ut.  

Let Nt be the neighborhood of Go in F formed by all ~ ~ F satisfying 

C(y~) - Go(Y,) ~ Ul (1 <_ i < n). 

Let N2 be the neighborhood of t/o in F formed by all ~/~ F satisfying 

(rlol~o~pO~o)(yi)-(~oOXO~O~o)(y~)~.U ( ! < i < n ) .  

Then we have 

(t/o 1to 4~o ~)(Y3 - (t/o rco ~o Co)(Y3 e U for C ~ N1, ~/~ F and 1 < i < n, 

and therefore 

(t/o fro ~o ~)(Y3 - (t/0o too ~o ~o)(Y3 ~ U + U for ~ ¢ NI ,  r/6 N z and 1 < i < n. 

This proves that the function (~, t/)--, t/o ~ o~ o ~ from F x F into E Y is continuous 
on F x F .  

Let A denote the set of all (C,I/)~F x F satisfying (1). For each C e F ,  let 
A(~) = {t/e F:(C,t/)~ A}. As we have seen at the beginning of the proof, A(~) 
is nonempty for every ~ e F .  Since F is convex, A(~) is convex. Since 
( ~ , ~ / ) ~ o ~ -  t/o~roq~oC is a continuous function from F x F into E ~', A is 
closed in F x F. Thus for every C ~ F, A(~) is a nonempty closed convex subset 
of the Compact convex set F.  

The set-valued function ~ -~ A(~) is upper semi-continuous on F in the follow- 
ing sense: for any Co s F  and any open set G in Ersuch that A(~o) ~ G, there is 
a neighborhood No of Co in F such that A(~) ~ G for all C e No. In fact, let ..4 r 
be the family of all neighborhoods of Go in r .  If we denote U¢,N A(~) by A(N), 
then since A is closed in F x F, it is easy to see that A(~o) = [")s, ~A(N). If  an 
open set G in E Y contains A(~o), then by compactness of  F, there is a finite 
number of N 1, N2,. .  ",Nk e , C  such that G ~ ( '~= t A(N~). Then No = N ~=~ N ~  M/" 
and G ~A(No). 

We now apply a generalization [1, 5] of a fixed-point theorem of Kakutani. 
For the upper semi-continuous set-valued function C--) A(~) defined on r ,  there 
exists a ~ ~ F such that ~ e A(~). For this ~, we have (~bo ~)(Y) = (~o ~ro ~bo ~)(Y) 

~(Y), which completes the proof. 
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Actually, Theorem 1 remains true, if the hypothesis on local convexity of the 
topological vector space E is replaced by the condition that every two distinct 
points of E may be separated by a continuous linear functional on E. This results 
from the following alternative proof. 

Another proof of Theorem 1. As we have seen above, the proof of Theorem 1 
amounts to showing the existence of a ~ e F satisfying 

( 2 )  = 

As in the first proof, we shall still need the facts that the function 
(~,ff)oqSo~-~/o~o~bo~ from F x F into E r is continuous on F x F, and 
that for each ~ ~ F there is an/1 e F satisfying (1). 

Instead of local convexity, we assume now that any two distinct points of E 
can be separated by a continuous linear functional on E. It follows that E r 
also has this property. ForacontinuouslinearfunctionalfonE v, let ¢ ( f )  denote 
the set of  all ~ ~I '  satisfying f ( ~ o  ~ -  ~o no ~o ~)= 0. The existence of a 
satisfying (2) means [ ' ) $ ¢ ( f ) # ~ ,  where the intersection is taken over all con- 
tinuous linear functionalsf on E r. Since O(f) is a closed subset of the compact 
set F,  it suffices to prove that [")~LlO(.f~)#~ for any finite number of con- 
tinuous linear functionals f~ on E z. 

Given any finite set {f l , f2 , '" , f ,}  of continuous linear functionals on E r, 
consider the set ~F formed by all (~,t/) e F x F satisfying 

[ = I  f = t  

We observe that: (i) F is a nonempty compact convex set in E Y and ~ is a closed 
subset of F x F; (ii) ( ¢ , ~ ) e ~  for each ~ e F ;  (iii) for each ~ F ,  the set 
{r/eFz ( ~ , f f ) ~ }  is convex (or empty). These facts (i)--(iii) imply [2, Lemma 4] 
the existence of a ~t ~ F such that (~t,r/)~ ~F for all r/~ F; this implication does 
not require local convexity of E r. For this ¢1, we can find an r/t e F such that 

o ~1 = ~t o n o ~ o ~1, which together with (~ ,  ~ )  e • imply that 
fl(~o~t-~tono~o~l)=O for 1 - < i < n .  Thus ~ l a N ] = i ~ ( f ~ ) # ~ ,  which 
was to be proved. 

COROtJ.ARY 1. Let X be a set in a separated locally convex topologicalvector 
space E. Let lr be a continuous mapping from X onto a Hausdorff space Y such 
that the following conditions are fulfilled: 

(3) For each y ¢ Y, n-t(y)  is compact and convex. 

(4) The set Fo of all 7r-cross-sections is nonempty and equicontinuous on ¥. 

Let dp be a continuous mapping from X into E. I f  for every ~¢Fo there is 
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an ~/~ro such that (~bo0(Y)cr/(Y),  then there exists a ~EFo such that 

Proof. By Theorem 1, it suffices to verify that the set Fo of all 7~-cross-sections 
is a convex compact set in E Y. 

Let ~1,~2 e r o  and let ~ = clot + c2~2, where cl > 0, c2 > 0 and cl + c2 = 1. 
For each y ~ Y, ~I(Y) and ~2(Y) are in the convex set rr- l(y), so C(Y) ~ re- l(y). 
Hence ~(Y) c X and 1to C is the identity mapping on Y. As ~ is clearly continuous, 
we have ~ e t o .  Thus ro  is convex. 

For each y e ¥, {~(y):~ e Fo} is contained in the compact set ~-1(y). It fol- 
lows that Fo is relatively compact in E r. It remains to verify that ro  is closed in 
E r. Let ~0 be in the closure of Fo in E Y. For each y ~ Y, C(Y) is in the compact set 
n -  l(y) for every ~ e ro ;  so we must have Go(Y) ~ ~- l(y). Thus Go(Y) c X and 
no ~0 is the identity mapping on Y. That Co is continuous on Y follows from the 
equicontinuity of ro  and the fact that 40 is in the closure of Fo. Hence Co ~ Fo. 
This verifies that ro  is closed in E Y and therefore is compact. 

3. Existence of invariant linear subspaces. In this section we apply Theorem 1 
to study invariant linear subspaces contained in a given set. 

THEOREM 2. Let E, F be two separated locally convex topological vector 
spaces, and let p be a continuous linear transformation from E onto F. Let X 
be a set in E having the following properties: 

(5) For each y e F ,  p - l ( y ) ¢ h X  is compact and convex. 

(6) There is a neighborhood W of O in F such that p-~(W) ~ X  is bounded. 

(7) X contains a linear subspace L (not necessarily closed) of E such that 
p(L) = F.  

Let A denote the fami ly  of all linear subspaces L of E such that L c  X and 
p(L) = F.  I f  ~ is a continuous mapping from X into E such that for every 
Le A, dp(L) is contained in some M e A, then there exists an L ~ A with dp(L) c L. 

Proof. Let r denote the set of all ~ e E  F such that C(F) c X, C is linear and 
po ~ is the identity mapping on F.  Then ~(F) E A for every ~ e r .  By(5), X N Ker p 
is compact, so L N Kerp = {0} for every L cA.  Thus to each L e A there cor- 
responds a unique ~ e r with ~(F) = L. Hence A - {~(F): C E r} ,  and (7) means 
that r is nonempty. 

Consider an arbitrary neighborhood U of 0 in E. By (6), p-t ( W ) n  X is 
bounded, so there is an r > 0 such that p- t (W) o X c rU. Then for every ~ e F 
we have ~(W) c p - l ( W )  o X  c rU or C(r-IW) c U. As W is a neighborhood 
of 0 in F, this shows that the set F of linear transformations is equicontinuous. 

Let ~ t , ~ 2 e r  and ~=cx~l  + c2C2, where c120 ,  c2>0 ,  ct +c2 = 1. Then 
for each y e F ,  the points ~I(Y) and ~2(y) are in the convex set p - t ( y ) O X ,  
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so C(Y) ~ P- l(y) n X .  Hence C(F) c X and p o C is the identity mapping on F. 
As C is linear, we have C e F .  Thus F is a convex set in E r. 

Let Co be in the closure of F in E F. Then Co is necessarily linear. For each 
y e F, C(y) is contained in the compact set p-  l(y) n X for every C e F. This implies 
Co(Y) e P - I ( Y ) n X .  Hence Co(F)c X and p o Co is the identity mapping on F ,  
i.e., Co e F.  This shows that F is closed in E r .  For each y e F, {C(Y): C e F} being 
contained in the compact set p- 1 (y) n X,  is relatively compact in E. It follows 
that F is relatively compact in E r and therefore is compact. 

I f  we denote by n the restriction of p on X,  then n(X) = F.  F is an equicon- 
tinuous set of  n-cross-sections and it is a nonempty compact convex set in E F. 

Let C ~ F and L = C(F). Then Le  A, so there is an M e A such that ~b(L) c M.  
Let t /e F be such that M = t/(F). Then (~bo C)(F) = 4~(L) c ~/(F). By Theorem 1, 
there exists a ~ ~ F such that (~b o ~) (F) c ~(F). Then L = ~(F) ~ A and q~(/.,) c L,  
and the theorem is proved. 

COROLLARY 2. Let a normed vector space E be the direct sumE = Et ~ E 2  
of two closed linear subspaces El, E2, of which E2 is reflexive. For x = y + z 
with y ~ Ex, z e E2, let q(x) = I1 y II - II z II. Let A be the fami ly  of all those 
linear subspaces (not necessarily closed) L of E such that n ( L ) = E l  and 
q(x) > O for x eL,  where n denotes the projection from Ea ~ E2 onto E t  . Let 
dp be a continuous linear transformation from E into itself. If, for  any L~ A, 
there is an M ~A with ok(L)c M,  then there exists an L e a  with dp(L)c L. 

Proof. We use the weak topology of E,  for which both n and ~b remain 
continuous. Let X = {x E E: q(x) > 0}. For each y e Ex, n - l (y )  n X = {y + z: 
z ~ E2 and II z II--< II y I1~ is clearly convex; it is weakly compact since E2 is re- 
flexive. I f  W = { y e E l :  [[yl[ _-__ t}, then n - l ( w )  n X  = {y + z: y e E t , z e E 2  and 
II z 11---II y II-<- 1} is bounded. Thus the result follows from Theorem 2. 

THEOREM 3. Let E be a separated locally convex topological vector space. 
Let n be a positive integer and X a set in E having the following properties: 

(8) There exists a closed linear subspace H in E of codimension n such that 
X O(x  + H) is compact and convex for  every x eE .  

(9) X contains an n-dimensional linear subspace of E. 

Let dp be a continuous linear transformation from E into itself such that: 

(10) ~(X) c X.  

(11) No 1-dimensional linear subspace of E is contained in X n K e r ~ .  

Then there exists an n-dimensional linear subspace L of E such that L c  X 
and ~?(L) = L. 

Proof. Observe first that in case F is finite dimensional, Theorem 2 remains 
valid without hypothesis (6). In the proof of Theorem 2, hypothesis (6) was used 
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only in establishing the equicontinuity of F .  (For the notation, see Theorem 2 
and its proof.) In case F is of finite dimension n,  the equicontinuity of F is a 
consequence of  (5). In fact, let {el,e2,.. . ,e,} be a basis of F ,  and let U be an 
arbitrary balanced convex neighborhood of 0 in E.  Since p-~(ei) r3 X is compact, 
there is an r > 0 such that r(p- l (e3 ~ X )  c U for 1 < i _< n. Then ~ ( e 3 e r - l U  
for all ~ e F  and l ~ i ~ n .  As U is balanced and convex, we have 
~(Y) = ~ = 1 q~(e3 e U for all ~ e r and all y = ~.~= xc~e~ satisfying ~ = :  [c, I < r. 
Thus F is equicontinuous. 

Now under the hypothesis of the present theorem, let p denote the canonical 
mapping from E onto E / H ,  and let F = E / H .  Then d i m F  = n. Let A denote 
the family of  all n-dimensional linear subspaces of  E contained in X.  By (10) 
and (11), we have ~b(L) c X and dim ~ (L) = n for L e A .  Thus ~b(L)eA 
for LeA. By (8), X n Ker p = X n H is compact, so L :~ Ker p = {0} for L e A. 
Hence A is precisely the family of all linear subspaces L of E such that L c X 
and p(L) = F.  All hypotheses except (6) of Theorem 2 are satisfied. Since F is 
finite dimensional, the present theorem follows. 

The following corollary has been given in [3]. It follows from Theorem 3 
in the same manner that Corollary 2 follows from Theorem 2. 

COROLLARY 3. Let a Banach space E be the direct sum E = E1 @E2 of two 
linear subspaces, of which E 1 is of finite dimension n and E 2 is reflexive. For 
x = y + z with y e E 1, z e E 2, let q(x) = [l y [l - [l z ll . Let dp be a continuous 
linear transformation from E into itself. I f  x # 0 and q(x) > 0 imply ~(x) ~ 0 
and q(c~(x)) ~ O, then there exists an n-dimensional linear subspace L of E 
such that d?(L) = L and q(x) ~_ O for  all x e L.  
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